Abstract

This paper explains an experimental study on a full-scale L-shape single story light frame wood house under the uniform lateral load simulated using a gasbag. The study verifies that shear walls are staggered to each other and the 1.0-m offset between them behave as a continuous shear wall, floor diaphragm with a reentrant corner up to 1.0 m that does not need a continuous end chord. Degradation in racking stiffness of light frame wood construction after continuously repeated cyclic lateral loads is not observable, while intermittent and larger amplitude cycling can cause observable settling of residual deformation and degradation in racking stiffness. The rigidity performance and high racking resistance of the floor diaphragm enables the light frame wood building to remain intact under ultimate lateral load, and recommends interstory percent drift restrictions for the lateral wind load design of the structures and the way to properly calculate racking capacity of gypsum sheathings. The conclusion of this paper can benefit the engineering practice of the light frame wood structures in hazard lateral load regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.