Abstract

The service life and the reliability of contact mechanical seal are directly affected by the wear of seal pairs (rotor vs. stator), especially under the cryogenic environment in liquid rocket engine turbopumps. Because of the lower friction and wear rate, amorphous carbon (a-C) coatings are the promising protective coatings of the seal pairs for contact mechanical seal. In this paper, a-C coatings were deposited on 9Cr18 by pulsed DC magnetron sputtering. The tribological performances of the specimen were tested under three sealed fluid conditions (air, water and liquid nitrogen). The results show that the coatings could endure the cryogenic temperature while the friction coefficients decrease with the increased contact load. Under the same contact condition, the friction coefficient of the a-C coatings in liquid nitrogen is higher than that in water and that they are in air. The friction coefficients of the a-C coatings in liquid nitrogen range from 0.10 to 0.15. In the cryogenic environment, the coatings remain their low specific wear rates (0.9×10−6 to 1.8×10−6mm3N−1m−1). The results provide an important reference for designing a water lubricated bearing or a contact mechanical seal under the cryogenic environment that is both reliable and has longevity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call