Abstract
Grinding is always a complicated machining process for joint interaction of numerous random abrasive grits in different chip formation processes. Therefore, analysis of grinding force requires a more comprehensive insight on the grinding mechanisms. This paper is devoted to propose an analytical force model in grinding of maraging steel 3J33 based on the fact that grinding process is divided into three stages, namely rubbing, ploughing and cutting, in terms of grits working status. These three stages are determined by the chip thickness model that is assumed to conform to Rayleigh distribution, in which the rubbing stage is derived from Hertzian contact theory. The experimental coefficients in the force model are calibrated by performing a set of training tests. The predicted normal and tangential grinding forces of the developed model are compared with those obtained from validation tests, which show favorable agreement quantitatively. The contributions of the grinding force components in different grit–workpiece interaction stages are obtained from the model and theirs relationships with process parameters are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.