Abstract

Strengthening using prestressed CFRP plate is a new developed technology in recent years, which can significantly improve the flexural behavior of reinforced concrete (RC) beams. In this paper, an experimental study including four RC beams stengthened with CFRP plates using self-developed anchorage system was carried out. The nonlinear finite element models of the strengthened beams were constructed to simulate the influence of flexural behavior on RC beams strengthened with CFRP plates under different damage degrees. The experimental results indicated that initial damage degrees have greatly influence on the crack distribution and ductility, deflection and the ultimate flexural strength of the strengthened beams, as well as steel reinforcement strain and CFRP plate strain. Meanwhile, the finite element model can predict accurately performances of strengthened RC beams before CFRP debonding. In addition, the numerical analysis indicated that the sustained loading while strengthening RC beam using prestressed CFRP plates would induce adverse effect, so the live loading should be removed before starting the strengthening works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.