Abstract

Continuous spill fires pose significant risks to the storage and transportation industries of liquid fuels. To investigate the flame length and pulsation behavior of continuous spill fires, large-scale spill fire experiments were conducted on water to simulate the burning fuel on a water surface that could occur during firefighting of tank fires or due to leaked fuels on water during transportation, with varying discharge rates (3, 6, 9, 14 mL/s) and ignition delays (0, 10, 20, 30 s). The results suggest that the flame length increased initially with the spread area and reached the maximum at the end of the spreading stage, then followed by a decrease at the shrinking stage and kept nearly constant at the steady stage. For the steady flame length, a new correlation (Ls/D=3.1(Q˙*)0.42) was established based on dimensionless analysis, which was higher than that for pool fires, highlighting the important differences between spill and pool fires. This developed model was also used to predict the maximum flame length with a maximum deviation of 19.2%, as the heat transfer mechanism and air entrainment are expected to be similar at the shrinking and steady stages. The flame pulsation frequency was determined through the fast Fourier transform (FFT) method, which shows a gradual decrease during the spreading stage while remaining higher than that of pool fires at the steady stage. Subsequently, two new correlations (fi=0.525g/D and fs=0.724g/D) were derived from experimental data to predict the pulsation frequency at both spreading and steady stages. The higher frequencies during the steady stage can have a significant influence on the radiation impact to adjacent equipment or personnel. This study not only provides insights into the flame and pulsation behaviors of spill fires but lays a solid foundation for the thermal hazard and risk assessment analysis in the liquid fuel storage and transportation industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.