Abstract

Abstract: Concrete consisting of cement, water, fine and coarse aggregates are widely used in civil engineering constructions. Though making concrete is convenient and inexpensive, its brittle behavior upon tensile loading is one of its undesirable characteristics so that leads to the development of fiber reinforced concrete or engineered cementitious composites to improve this deficient. The Flexural strength of PVA (polyvinyl alcohol) FRC (fiber reinforced concrete) can be 150-200% greater than for normal concrete. According to Structural designers the damage tolerance and inherent tight crack width control of PVA FRC is found to be impressive in recent full-scale structural applications. If proper volume fractions are used the compressive strength PVA FRC can be similar to that of conventional concrete. The aim of this research work is to study compressive and tensile strength of FRC consisting PVA fiber & glass powder and studying the effect of glass powder in it. This research also gives rough idea on crack resistance capacity of FRC. In this paper we studied and provided detailed review on properties of PVA FRC with glass powder and experimentally identified the best ECC mix by analyzing the compressive & the flexural strength at different ratios like 0.5%, 1%, 1.5% of PVA fiber of total dry mix weight and in each case 15% of fine aggregate was replaced by glass powder. By conducting the compressive strength test and flexural strength test the maximum result we get at 28 days is 28.38Mpa and 8.95Mpa respectively which is more durable as compared to conventional concrete by IS 516:1959. So by analysis of results it can be seen that 1% mix is found to be optimum in all aspects. Keywords: PVA FRC, Polyvinyl Alcohol, Fibre Reinforced Concrete, Glass Powder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call