Abstract

In this paper, a new kind of evaporative heat transfer experiment for the cooling process of coolers/condensers is conducted. The design of the test coils is immersed in an air-water bubbling layer. The air-water two-phase flow passes through the tubes of the coils. Due to the motion of the air bubbles in the water, a thin water film forms on the surface of the tube. As the air bubbles pass by the tube this water film is evaporated into the air. The tubes of coil reject heat to the water film, and the evaporation of the water film rejects heat to the air bubble stream. This heat transfer mode significantly increases the heat transfer coefficient between tubes and air. The consumption of the power of a water pump can be decreased. Moreover, the airflow rate required is less than that of an air-cooled condenser. The pressure drop of air through air-water bubbling layer and the heat transfer between the tube and water are experimentally investigated in this paper. The results show that the factors affecting the pressure drop and the heat transfer coefficient involve the pore geometry of sieve plate, the height of the air-water bubbling layer, the air flow rate through the sieve plate and the heat flux of tubes. The heat transfer coefficient between tube and water is two times larger than that of falling film of water on the outer surface of tube.Copyright © 2005 by ASME

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.