Abstract

Abstract Propeller cavitation is a main source of fluctuating pressure and noise induced by propellers, and the tip vortex cavitation is the principal source. The present study measures the flow fields near the blade tip using the 2D-PIV technique. The experimental setup and scheme are introduced. We monitor the process of generation and shedding of the propeller tip vortex in real time and analyse the dynamic structure of the tip vortex by testing the propeller wake field under different phases of the axial plane. The distribution characteristics of radial and axial velocity are also analysed. The influence range and the vorticity of the tip vortex and trailing vortex are obtained. All of the measured quantitative data are useful for future propeller design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.