Abstract
In the present research, an experimental study was carried out to assess the vibrational behavior of Acrylonitrile-Butadiene-Styrene (ABS) based Nano composites reinforced by Nano-silica particles. Therefore, the twin extruder methodology was used to fabricate the Nano composite samples. The silica content and extrusion temperature were considered as variable parameters. The samples were prepared based on bending test standards and then subjected to dynamic mechanical and thermal analysis machines. To identify the effect of SiO2 content and presence of defects in the fabricated samples, 12 experiments were carried out and the obtained results analyzed based on scanning electron microscopy (SEM) images of the samples’ cross section and the graphs, which were obtained from the aforementioned tests. As a result, it was found from the results that by increasing the silica content up to 2%, the static and dynamic strength of the fabricated Nano-composite were significantly enhanced. However, by a further increase of silica content, it was found that the fabricated samples showed brittle behavior causing reduction of strength properties. On the other hand, for defected samples, the static and dynamic forces of the fabricated composite reached a maximum at 3% and 4% of Nano-silica content, respectively. It was also found from the results that the increase of silica content caused a reduction in the damping behavior of fabricated composites for both the perfect and defected samples. This trend could be attributed to the fact that an increase of silica content increased the storage modulus in common surfaces between polymeric layers and the reinforcement material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.