Abstract

The empirical formulas of dynamic amplification factor (DAF) specified in current bridge codes only consider the span or fundamental frequency of reinforced concrete (RC) girders in highway. Although investigations have been carried out on different bridges with considering the road roughness, vehicle–bridge interactions and travelling velocity, but most of them have been done numerically. In this study, experimental study of DAF was carried out on three simple-supported RC beams with different fundamental frequencies and different damage stages, i.e. without damage, cracked and yielded. Impulse hammer with four hammer heads of different hardness, i.e. black, red, green and brown, were used to generate impact forces with increasing duration. The impact tests were first carried out on the RC beams without any damage by impact hammer with different hammer heads. Then the RC beams were loaded by a concentrated static force at the mid-span to crack. Impact tests with different hammer heads were repeated on the cracked RC beams. Finally, the cracked beams were further loaded by a concentrated static force to yield of the longitudinal reinforcement. The impact tests were repeated on the yielded beams again. Load cells installed at the supports of the RC beams were used to measure the reaction force generated by the hammer, then DAF was calculated directly by dividing the peak reaction force with the peak impact force. Data obtained from tests, theoretical analysis and specification in codes were compared to examine the DAFs. Results show that the ratio of duration of the impact force and the period of the beams performed a significant effect on the DAFs of the beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call