Abstract

There is increasing use of wood-based composites in industry not only because of the shortage of solid wood, but above all for their better properties such as: strength, aesthetic appearance, etc., compared to wood. Medium density fiberboard (MDF) is a wood-based composite that is widely used in the furniture industry. The goal of the research conducted was to determine the effect of the type of coating on the drill cutting blades on the value of thrust force (Ft), cutting torque (Mc), cutting tool temperature (T) and surface roughness of the hole in drilling MDF panels. In the tests, three types of carbide drills (HW) were used: not coated, TiAlN coated and ZrN coated. The measurement of both the thrust force and the cutting torque was carried out using an industrial piezoelectric sensor. The temperature of the cutting tool in the drilling process was measured using an industrial temperature measurement system using a K-type thermocouple. It was found that the value of the maximum temperature of the tool in the drilling process depends not only on the cutting speed and feed rate, but also on the type of coating of the cutting tool. The value of both the cutting torque and the thrust force is significantly influenced by the value of the feed rate and the type of drill coating. The effect of varying plate density on the surface roughness of the hole and the variation of the value of the thrust force is also discussed. The results of the investigations were statistically analyzed using a multi-factorial analysis of variance (ANOVA).

Highlights

  • Medium density fiberboard (MDF) is a wood-based product widely used in the furniture industry [1,2,3,4,5]

  • 0.10 function of cutting length when drilling the at a cutting speed of m/min and a feed rate of function length when drilling the MDF at a cutting speed of 35 m/min and a feed rate167 of

  • In a similar manner to the effect of drilling parameters on the value of the thrust force, this fact can be explained by the differing values of the coefficient of friction between the tool and the workpiece resulting from the type of drill coating

Read more

Summary

Introduction

Medium density fiberboard (MDF) is a wood-based product widely used in the furniture industry [1,2,3,4,5]. MDFs are composed of wood fibers, bonded with formaldehyde glue under the influence of heat and pressure. The use of medium density fiberboards in industry is associated with their machining during furniture production. One of the most commonly used operations in the production of MDF furniture is drilling. The MDFs machinability is determined by the quality of the surface [5,6], which largely depends on the degree of tool wear and the mechanism of chip formation [7]. Various studies have been carried out to improve understanding of MDF cutting characteristics [4,8,9,10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call