Abstract
The complex surface of an aircraft generates a nonzero pressure gradient flow. In this study, the boundary conditions of favorable and adverse pressure gradients are constructed in a small low-turbulence wind tunnel test section. Hot-wire anemometers and time-resolved image velocimetry are used to analyze the flow structure in a fully developed turbulent boundary layer with porous media. The effects of the porous surface on the statistical characteristics of the turbulent flow field and turbulent flow structure are analyzed and discussed. The results show that porous media reduce the velocity gradient in the linear layer, and the friction drag reduction effect is higher downstream of the porous wall. The drag reduction effect decreases along the flow direction. A wall with a 10 pores per inch produces a slightly better drag reduction effect than smooth wall. The maximum local drag reduction effect of a 10-pores-per-inch porous wall is 43.7% under a favorable pressure gradient and 42.3% under an adverse pressure gradient. The velocity streaks in the inner layer show that the porous wall widens the low-velocity streaks, making them more stable, while the high-speed streaks decrease in size under the pressure gradient. In the case of the adverse pressure gradient, the structure of the streaks becomes blurred, and their strength weakens. Under both favorable and adverse pressure gradients, the porous media lift up the coherent structures near the wall, thus weakening the large-scale coherent wall structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.