Abstract

The input-output ratio and comprehensive energy consumption of low concentration coalbed methane cryogenic liquefaction devices are determined by the process parameters in control of the distillation column. In order to accurately control the actual operation process of the distillation column, the effect of the operating temperature of the distillation column on the liquefaction performance of a cold box was studied experimentally, and the optimal control parameters of the distillation column were obtained. The results show that the recovery rate of methane decreases with the increase in temperature at the top of the distillation column, and when this temperature is higher than −178 °C, the methane recovery rate drops sharply to below 90%. When the temperature at the bottom of the distillation column rises from −154 °C to −142.7 °C, the purity of LNG products is improved, and when this temperature is increased to −143.5 °C, the purity of products at the bottom of the distillation column reaches the standard, and can be stored safely. In actual operation, the evaporation temperature at the bottom of the column should not be higher than −140 °C. In the process of industrial plant design, measures should be taken to reduce the interaction of the temperature regulation at the top and bottom of the distillation column. When selecting the refrigerant circulation compressor, the leakage of the refrigerant should be considered to maintain the operating pressure of the refrigeration cycle.

Highlights

  • Coalbed methane (CBM) occurs in coal, and its main component is methane, so it is an important energy resource which can be used as an effective fuel supplement in China

  • The utilization rate of coalbed methane extracted from underground coal mines is low, because coalbed methane inhales a large amount of air during the negative pressure extraction process, which is low in concentration, difficult to use, heavy in safety guarantee pressure, and poor in economy

  • The utilization of methane in low concentration coalbed methane has the dual significance of energy saving and environmental protection [9]

Read more

Summary

Introduction

Coalbed methane (CBM) occurs in coal, and its main component is methane, so it is an important energy resource which can be used as an effective fuel supplement in China. If the control is not good, the temperature drift phenomenon will occur, which will seriously affect the separation effect of coalbed methane, and a large quantity of methane will volatilize from the top of the rectification column into the tail gas and be discharged into the atmosphere. The effect of the distillation column operating temperature on the performance of the liquefaction cold box is investigated, and the research results have practical guiding significance for the determination of the operating parameters of cryogenic liquefaction cold boxes containing oxygen coalbed methane, and the optimization of the process package

Experimental Device
Experimental Methods
Analysis of Experimental Results
Technology Optimization
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.