Abstract

The mechanical harvesting of corn has always been a problem for the development of the corn industry. In the present investigation, a tangential flow–transverse axial flow threshing test system was designed based on the 4YL-4/5 harvester. The structure design was modular, and the threshing drum and other key parts could be changed, or the technical parameters could be adjusted according to the needs. Thus, the system becomes suitable to carry out the threshing test of various grains. In this paper, two kinds of systems, a cylindrical plate-tooth mixed row threshing drum and a full cylindrical threshing drum, were designed. Using the same materials and technical conditions, a comparative experiment of the corn grain harvest was carried out to explore the mechanical–technical conditions and methods to reduce the grain breakage rate of corn’s direct harvest.The results showed that the threshing ability and adaptability of the cylinder with a plate-tooth mixed arrangement structure were higher than those of the full cylinder arrangement structure. It was also found that for a higher moisture content (above 28%) of the maize ear, the grain breakage rate met the national standard. On the other hand, the cylinder with a plate-tooth threshing drum can support a wider range of moisture contents and drum peripheral velocities than the full cylinder threshing drum. Within the range of all tested moisture contents and drum peripheral velocities, the minimum grain breakage rate of the full cylinder tooth drum was 3.7%, and the minimum grain breakage rate of the cylinder with the plate-tooth threshing drum was 1.5%, which means a reduction of 59.5% of the breakage rate was achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call