Abstract

An experimental study of flame propagation, acceleration and transition to detonation in stoichiometric hydrogen–methane–air mixtures in 6 m long tube filled with obstacles located at different configurations was performed. The initial conditions of the hydrogen–methane–air mixtures were 1 atm and 293 K. Four different cases of obstacle blockage ratio (BR) 0.7, 0.6, 0.5 and 0.4 and three cases of obstacle spacing were used. The wave propagation was monitored by piezoelectric pressure transducers PCB. Pressure transducers were located at different positions along the channel to collect data concerning DDT and detonation development. Tested mixtures were ignited by a weak electric spark at one end of the tube. Detonation cell sizes were measured using smoked foil technique and analyzed with Matlab image processing toolbox. As a result of the experiments the deflagration and detonation regimes and velocities of flame propagation in the obstructed tube were determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.