Abstract

Thanks to its good specific strength and modulus, carbon fiber-reinforced plastic (CFRP) is widely used in such fields as aerospace and automotive. Nonetheless, it is very likely that the serious tool wear and some surface quality defects occur in machining, such as delamination, tear, burr, and so forth. Thus, this paper carried out the experimental research into the tool wear in milling carbon fiber composites with spiral staggered diamond-coated milling cutter. According to the evolution of tool wear micro-morphology, the tool wear process was obviously divided into two stages, i.e., coating particle wear and coating shedding. It was found that the former was dominated by the abrasive wear mechanism and the latter the fatigue wear mechanism. In addition, wear mechanism and cutting force variation of each stage were analyzed. In addition, the coating shedding happened obviously in advance with the increase of milling speed. In the period of coating particle wear, the tool was in good cutting performance, and its cutting force changed slowly, while after it came into coating shedding period with the aggravation of tool wear, the cutting force increased greatly and the cutting performance worsened obviously. Thus, the appropriate control over the tool wear of spiral staggered diamond-coated milling cutter is the key to improving the machining quality of carbon fiber composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.