Abstract

Large aerospace thin-walled structures will produce deformation and vibration in the machining process, which will cause machining error. In this paper, a cutting experimental method based on multi-layer machining is proposed to analyze the influence of cutting tool, cutting path, and cutting parameters on machining error in order to obtain the optimal cutting variables. Firstly, aiming at the situation that the inner surface of the workpiece deviates from the design basis, the laser scanning method is used to obtain the actual shape of the inner surface, and the method of feature alignment is designed to realize the unification of the measurement coordinate system and machining coordinate system. Secondly, a series of cutting experiments are used to obtain the machining errors of wall thickness under different cutting tools, cutting paths, and cutting parameters, and the variation of machining errors is analyzed. Thirdly, a machining error prediction model is established to realize the prediction of machining error, and the multi-objective optimization method is used to optimize the cutting parameters. Finally, a machining test was carried out to validate the proposed cutting experimental method and the optimal cutting parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.