Abstract

Developing a suitable scale-up photothermal reactor is important for the application of solar photothermal catalytic hydrogen(H2) production from biomass. Herein, Ru nanoparticles loaded on TiO2 were used as photocatalysts to catalyze hydrogen production from glycerol. A novel linear concentrated light flow reactor (LCLFR) was designed and installed. The effects of concentrated light intensity and thermal energy were investigated on the hydrogen production performance of LCLFR. The optical performance of the reactor was evaluated using Monte Carlo ray tracing method and experimentally validated. The spectral absorption and the photothermal conversion properties of Ru/TiO2 photocatalysts in the LCLFR were analyzed with different concentration light intensity. The results showed that both concentrated light and temperature could significantly enhance the hydrogen production performance of glycerol catalyzed by Ru/TiO2. Notably, the promotion of hydrogen production rates by concentrated light becomes stronger at elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.