Abstract

Abstract Capillary pressure and resistivity in porous rocks are both functions of wetting phase saturation. Theoretically, there should be a relationship between the two parameters. However, few studies have been made regarding this issue. Capillary pressure may be neglected in high permeability reservoirs but not in low permeability reservoirs. It is more difficult to measure capillary pressure than resistivity. It would be useful to infer capillary pressure from resistivity well logging data if a reliable relationship between capillary pressure and resistivity can be found. To confirm the previous study of a power law correlation between capillary pressure and resistivity index and develop a mathematical model with a better accuracy, a series of experiments for simultaneously measuring gas-water capillary pressure and resistivity data at a room temperature in 16 core samples from 2 wells in an oil reservoir were conducted. The permeability of the core samples ranged from 9 to 974 md. The gas-water capillary pressure data were measured with confining pressures using a semi-porous plate technique. We developed the specific experimental apparatus to measure gas-water capillary pressure and resistivity simultaneously. The results demonstrated that the previous power law model correlating capillary pressure and resistivity works well in many cases studied. A more general relationship between the exponent of the power law model and the rock permeability was developed and verified using the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.