Abstract

Reduction in self-weight and achievement of full fire resistance requirements are some of the important considerations in the design of high-rise structures. Lightweight concrete filled steel tube (CFST) column provides an alternative method to serve these purposes. Recent studies on lightweight CFST columns at ambient temperature have revealed that foamed concrete can be a beneficial and innovative alternative material. Hence, this study investigates the potential of using foamed concrete in circular hollow steel columns for improving fire resistance. A series of nine fire test on circular unfilled hollow and foamed concrete filled hollow section column were carried out. ISO 834 standard fire exposure test were carried out to investigate the structural response of these columns under fire. The main parameters considered are load level and foamed concrete density; foamed concrete density used are 1500 kg/m3 and 1800 kg/m3 at 15%, 20%, and 25% load level. All the columns tested are without any external fire protection, with concentrically applied load under fixed-fixed boundary conditions. The columns dimension was 2400 mm long, 139.7 mm diameter and steel tube thickness of 6 mm. The fire test result showed that foamed concrete increases the fire resistance of steel hollow column up to an additional 16 minutes. The improvement is more at load level above 15%, and the gain in fire resistance is about 71% when 1500 kg/m3 density foamed concrete is used. Generally, foamed concrete filled steel hollow column demonstrate a good structural fire behavior, based on the applied load and foamed concrete density. Also, inward local buckling was averted by filling the steel hollow column with foamed concrete. General method for composite column design in Eurocode 4 adopted to calculate the axial buckling load of 1500 kg/m3 foamed concrete filled columns. These type of columns can be used for structures like airports, schools, and stadiums; taking the advantage of exposed steel for aesthetic purpose and high fire resistance. It can also be used for high rise structures; taking advantage of high fire resistance and reduction in self-weight of a structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call