Abstract

The use of glass-fiber-reinforced polymer (GFRP) bars to replace steel reinforcement in concrete structures is a relatively new technique. GFRP bars possess mechanical properties different from steel bars, including high tensile strength combined with low elastic modulus and elastic brittle stress–strain relationship. Therefore, design procedures should account for these properties. This paper presents the experimental moment deflection relations of GFRP reinforced beam which are spliced. Test variables were lab-spliced length of GFRP rebar. A total of 6 concrete beams reinforced with steel and GFRP rebar tested. Three concrete beams reinforced with spliced GFRP rebar and 1 reference beams reinforced with non-spliced GFRP rebar was tested. All the specimens had a span of 4000mm, provided with 12.7mm nominal diameter steel and GFRP rebar. All test specimens were tested under 2-point loads so that the spliced region is subject to constant moment. The experimental results show that the splice length of GFRP increased with the ultimate load increasing and decreased with stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.