Abstract

An innovative physical method to control fouling in heat transfer equipment—low voltage electrolysis anti-fouling (LVEAF) technology—is introduced. The objective of the present study is to testify the effect of LVEAF treatment in forced convective system and identify the operating mechanism. A series of fouling tests were carried out with and without LVEAF treatment. During the experiments fouling resistance was monitored, and the properties of test liquid were measured, including hardness, alkalinity, electrical conductivity, and pH. The main results were as follows: (1) The fouling was effectively restrained to form on the heat exchanger surface if the circulating water was treated with LVEAF. The scale inhibition ratios exceeded 90% in most cases. (2) The LVEAF technology is an active anti-fouling technology with lower energy consumption. The properties of treated test liquid were changed. (3) Electrochemical reactions occur near the electrode due to the low current existence in the water when the LVEAF device is working. A lot of fouling deposits formed in the test liquid near the cathode or on the inner surface of the treatment unit, but did not deposit on the heat exchanger surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.