Abstract

An air-supplement plasma synthetic jet (PSJ) actuator increases the air supplemental volume in the recovery stage and improves the jet energy by attaching a check valve to the chamber of a conventional actuator. To explore the flow control effect and mechanism of the air-supplement actuator, via particle image velocimetry experiments in a low-speed wind tunnel, the flow field and boundary layer characteristics of a two-dimensional airfoil surface under different actuation states were compared for different attack angles and jet orifices. The experimental results show that, compared with the conventional actuation state, the jet energy of the air-supplement PSJ is higher and the indirect mixing effect of the counter-vortex sequence produced by the jet-mainstream interaction is stronger. Furthermore, the boundary layer mixing effect is better, which can further suppress flow separation and improve the critical flow separation attack angle. Moreover, increasing the jet momentum coefficient can enhance the flow control effect. The findings of this study could provide guidance for the flow control application of air-supplement PSJs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call