Abstract

The research work of this paper is to quantitatively evaluate the ongoing damage degree of existing concrete structures being loaded by applying acoustic emission (AE) monitoring. On the basis of some approximations and simplifications, the relation between the AE parameter (AE event) and the scalar damage parameter for concrete structures under uniaxial compression was derived, and was modeled as a simply linear correlation by combining the rate process theory and the traditional parameter-based technique of AE, Continuous Damage Mechanics (CDM) and nonlinear regression analysis. Meanwhile, the AE event-based stress-stain relation was also modeled too. The measured data of AE monitoring system and the strain dynamical strain system used in this work confirms significantly the effectiveness of the AE event-based damage evolution assessment for existing hydraulic concrete structures. The results of the experiments show that the AE event-based method permits a fast and effective in situ assessment of the ongoing damage phenomena in hydraulic concrete structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call