Abstract

This paper presents research work involved in abrasive water jet machining of PZT ceramic material. Process parameters namely stand-off distance, water pressure and traverse rate are considered in the present study. Response surface methodology approach is used to design the experiments. Relative significance of process parameters and their influence on kerf properties are identified on the basis of analysis of variance. It is found that water pressure and traverse rate are most significant parameters followed by stand-off distance. On the basis of experimental analysis, regression models are developed to predict kerf taper and depth of cut. The models are developed with respect to significant parameters, interaction and quadratic terms. It is found that model predictions are in congruence with experimental results. Multi-response optimization of process parameters is also performed using desirability approach in order to minimize kerf taper and maximize depth of cut. Kerf wall features of machined surfaces are observed using scanning electron microscope. The findings of present study are useful to improve kerf properties in abrasive water jet machining of PZT ceramic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call