Abstract

An experimental study was performed on a two-phase critical flow with a non-condensable gas at high pressure conditions. Experimental data for the critical flow rates were generated by using sharp-edged stainless steel pipes with an inner diameter of 10.9 mm, a thickness of 3.2 mm, and a length of 1000 mm. The test conditions were varied by using the stagnation pressures of 4.0, 7.0, and 10.0 MPa, water subcoolings of 0.0, 20.0, and 50.0 °C, and nitrogen gas flow rates of 0.0–0.22 kg/s. The experimental results show that the critical mass flux decreases rapidly with an increase of the volumetric non-condensable gas fraction. Also the critical mass flux increases with an increase of the stagnation pressure and a decrease of the stagnation temperature. An empirical correlation of the non-dimensional critical mass flux, which is expressed as an exponential function of the non-condensable gas fraction of the volumetric flow, is obtained from the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.