Abstract

The research on rotating detonation turbine engine is attracting much attention in recent years. In this study, experiments have been performed on a structure combining a rotating detonation combustor and an axial-flow turbine to investigate the propagation characteristics of the hydrogen-air rotating detonation wave. The stable rotating detonation wave is successfully initiated using the spark plug and pre-detonator, and there is still a velocity deficit of about 20% relative to the Chapmane-Jouguet value. There is a formation process for the stable detonation wave, and the formation time for the pre-detonator is far less than the spark plug, however the final state is independent on the ignition device. The rotating detonation wave successively appears the two-wave state with a same direction, the two-peak wave state, and the state of strong–weak alternation during the formation process. Finally, only one stable detonation wave is formed in the chamber and propagates until the operation off.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call