Abstract

A simple model consisting of a mirror-housing and its cylindrical foot is applied to represent the automobile side-view mirror that causes unwanted aerodynamic noise and wind drag during high-speed driving. An additional slot is made on the solid foot to modify the flow around the mirror and thus reduce the side wall pressure fluctuation and aerodynamic drag. Flow fields and wall pressure fluctuations of these side-view mirror models have been investigated experimentally in a wind tunnel. The airflow rate through the slot varies with the changing of the slot area. Wall surface pressure sensors, particle image velocimetry (PIV), and six-component balance were applied to measure the acoustic and flow characteristics. The results demonstrated that, with the increase of slot airflow rate to 30%, the side wall pressure fluctuations were reduced by 5.1 dB and the drag coefficient decreased by 10.2%. The PIV measurements showed that the vortex cluster center behind the mirror was moved upward from the wall surface due to the slot airflow injection into the wake. The turbulent kinetic energy in the side-view mirror wake near the wall decreased with the increment of the airflow rate, reducing the side wall pressure fluctuations and thereby suppressing the noise generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call