Abstract

Experimental study on 75 kW th, downdraft (biomass) gasifier system has been carried out to obtain temperature profile, gas composition, calorific value and trends for pressure drop across the porous gasifier bed, cooling–cleaning train and across the system as a whole in both firing as well as non-firing mode. Some issues related to re-fabrication of damaged components/parts have been discussed in order to avoid any kind of leakage. In firing mode, the pressure drop across the porous bed, cooling–cleaning train, bed temperature profile, gas composition and gas calorific value are found to be sensitive to the gas flow rate. The rise in the bed temperature due to chemical reactions strongly influences the pressure drop through the porous gasifier bed. In non-firing mode, the extinguished gasifier bed arrangement (progressively decreasing particle size distribution) gives much higher resistance to flow as compared to a freshly charged gasifier bed (uniformly distributed particle size). The influence of ash deposition in fired-gasifier bed and tar deposition in sand filters is also examined on the pressure drop through them. The experimental data generated in this article may be useful for validation of any simulation codes for gasifiers and the pressure drop characteristics may be useful towards the coupling of a gasifier to the gas engine for motive power generation or decentralized electrification applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call