Abstract

X-pinch plasmas are known as point-like X-ray sources with the potential application for backlighting diagnostics. X-pinches are commonly driven by large pulsed power generators delivering high-voltage pulses with short rise-times, typically under 100 ns. When operating with slower capacitor banks, X-pinches become less reliable because of the arising X-ray pulse jitter and because of the appearance of two or more X-ray bursts coming from multiple hot spots. In this paper, a very compact inductance-capacitance (LC) generator with the current rise-time of 200 ns was used to drive molybdenum and tungsten wire X-pinches. A single peak, small shot-to-shot jitter emission of X-rays was obtained. Time-integrated penumbral imaging recorded the X-ray source dimension of less than 15 /spl mu/m in the spectral region above 2.4 keV. The total yield of more than 80 mJ was registered with the radiation pulse duration as short as 1.5 ns. The appearance of single- or multiple-source core structures is discussed in correlation with used wire material and X-pinch torsion angle. The results confirm the possibility of using an X-pinch driven by a fast compact capacitor bank for backlighting applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call