Abstract

Wind pressures acting on a cooling tower exposed to stationary tornado-like vortices are studied physically. This study focuses on the effects of swirl ratio and the distance between a cooling tower and a stationary tornado vortex on the pressure distribution around a cooling tower. Particular attention is devoted to the differences of pressure distribution and cross-correlation coefficients of pressures in a tornado with that in a conventional boundary-layer-type straight-line wind. The results show that a cooling tower exposed to a tornado experiences combined effects of pressure drop accompanying a tornado and aerodynamic flow-structure interaction. The pressure drop accompanying a tornado dominates the pressure coefficient magnitudes when the cooling tower is located at the tornado core center. The cooling tower experiences maximum wind force when it is located at the tornado core radius. Results show that the tornado-induced wind pressure is significantly different than that in conventional straight-line winds, and highlight the need to study tornado-induced wind loads on structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.