Abstract

Large amplitude vibration of mast arm structures due to wind loads are the primary contributing factor to the reduced fatigue life of signal support structures. To alleviate this problem of wind-induced in-plane vibration of mast arm signal structures, a particle-thrust damping based turned mass damper (PTD-TMD) device is adopted and its damping effect is characterized experimentally. The particle-thrust damping is a passive damping device that does not require electric power and is temperature independent. Based on the calibration test, an equivalent dynamic model of the PTD-TMD device is developed and used for numerical simulation study. The damping effects of this PTD-TMD device on signal support structures was investigated through both numerical analysis and laboratory testing of a 50-ft (15.24 m) mast arm structure including both free vibration and forced vibration tests. The experimental test and numerical study results show that vibration response behavior of mast arm signal support structures can be significantly reduced by installing the PTD-TMD that can increase the critical damping ratio of the mast arm signal structures to 4%. The stress range at the welded connection between the mast arm and traffic pole is also reduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call