Abstract

Abstract This paper describes the vaneless diffuser rotating stall (VDRS) development and cell-merging phenomena. A centrifugal compressor’s lifespan may be limited by flow instabilities occurring in off-design operation. One such instability is the VDRS, which generates oscillating, asymmetrical flow fields in the diffuser and, thus, undesired forces acting on the rotor. Understanding and prevention of VDRS behavior are crucial for achieving safe and undisturbed compressor operation. Experimental measurements of centrifugal compressors operating under the influence of VDRS have been presented. Two different approaches were used for the identification of VDRS: pressure measurements and two-dimensional (2D) particle image velocimetry (PIV). Frequency analysis based on spectral maps and cell development processes were investigated. The presented results showed that mass flowrate has an impact on the rotating frequency of both the entire structure and single cells. Additionally, it affects radial cell size, which grows with compressor throttling and ultimately reaches the length of the diffuser. During the experiments, the cell-merging phenomenon was observed which has not been widely described in the literature. The results presented in this paper allow a better understanding of vaneless diffuser rotating stall behavior. The phenomenon of the change of cell size and frequency could be very important for machine fatigue. Cell-merging could also have an impact on the machine’s vibrations and flow stability. Since it is believed that VDRS is one of the factors inducing surge, its understanding and prevention may have a positive influence on surge margins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.