Abstract

This paper describes an experimental study that used a fast-response temperature-sensitive paint (TSP) to investigate the unsteady aerothermodynamic phenomena occurring on a shock-tube wall. To understand these phenomena in detail, a fast-response TSP with high temperature sensitivity developed for transient temperature measurement was applied to the wall. The shock-tube experiment was carried out under the over-tailored condition, with a pressure ratio of 110 for test gases of air in driver/driven tubes. The following aspects were clarified using the TSP: (a) the TSP could be used to visualize the unsteady aerothermodynamic phenomena and estimate the quantitative heat flux on the shock-tube wall; (b) an x-t diagram based on the TSP response showed shock-tube wall characteristics that included the incident/reflected shocks, laminar-to-turbulent boundary-layer transition, streaks in the turbulent boundary layer, reflected shock/turbulent boundary layer interaction, and waves reflected from a contact surface; (c) the TSP graphically showed that a transition front from the plate’s leading edge and turbulent spots moved with 80% of the free-stream velocity behind the incident shock. In addition, the TSP could track the growth of the turbulent spots on the wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call