Abstract

This article describes the recent findings on two-fluid effects on magnetic reconnection in plasmas with variable collisionality in the magnetic reconnection experiment (MRX) [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)]. The MRX device has been upgraded to accommodate a variety of reconnection operation modes and high energy density experiments by increasing its capacitor bank energy and extending the discharge duration. As our experimental operation regime has moved from the collisional to the collision-free, two-fluid effects have become more evident. It is observed that the two-dimensional profile of the neutral sheet is changed significantly from the rectangular shape of the familiar Sweet-Parker type to a double wedge shape as the collisionality is reduced and the reconnection rate increases. The recent evolution of our experimental research from the magnetohydrodynamics (MHD) to the two-fluid analysis is presented to illuminate the physics of Hall MHD in a collision-free reconnection layer. In particular, a clear experimental verification of an out-of-plane quadrupole field, a characteristic signature of the Hall MHD, has been made in the MRX neutral sheet, where the sheet width is comparable to the ion skin depth. It is important to note that the Hall effect, which occurs due to two-dimensional laminar flows of electrons in the reconnection plane, is observed together with the presence of low and high frequency magnetic turbulence, which often has three-dimensional structures. These observations in MRX have striking similarities to the recent magnetospheric measurements of reconnection region, in which the quadrupole component has been detected together with magnetic fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.