Abstract

The aim of the present work is the experimental study of the turbulent flow induced by waves above a physical model of a rock-armored slope of 1/3. The armor consisted of two layers of rocks with characteristic diameter D50 = 4.4cm. Measurements of the instantaneous velocity fields were conducted using an underwater planar PIV system. Four cases of incoming waves were tested, two cases of regular waves of 1st order Stokes theory with wave period of 1.134s and wave heights of 0.04m and 0.08m, respectively, and two cases of irregular waves, generated from a JONSWAP spectrum, with a peak period of 1.134s and significant wave heights of 0.04m and 0.08m, respectively. For the regular waves, the period-averaged velocity profiles show the existence of a strong undertow current heading towards deep water, while turbulence is not homogeneous with larger horizontal fluctuations. The phase-averaged horizontal velocity profiles present systematically larger values during wave trough passage than during wave crest passage. Furthermore, as the depth becomes smaller, the waveform loses its symmetry, with the wave trough becoming wider and the wave crest steeper. For the irregular waves, the mean velocity profiles show the existence of an undertow current weaker in magnitude than the one in the regular waves, while turbulence is still not homogeneous with larger horizontal fluctuations. For both wave cases, spanwise vorticity, which is generated at the rough surface of the rock-armored slope, is transported landward by the turbulent velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.