Abstract

Biogas is a renewable source of energy produced by anaerobic digestion of organic material and composed mainly of methane (CH4) and carbon dioxide (CO2). Despite its lower heating value, biogas can still replace fossil fuels in several engineering stationary power generation and other industrial applications. Although numerous published studies were devoted to advance our understating of biogas combustion, experimental data of some parameters such as turbulent burning velocity (St) under certain operating conditions is still lacking. The present study aims to experimentally determine biogas turbulent burning velocity under normal temperature and pressure conditions. Turbulent premixed biogas–air flame was ignited at the center of a 29 L fan-stirred spherical combustion chamber of nearly homogeneous and isotropic turbulence. Test conditions consisted of varying turbulence intensity and biogas surrogate composition. Outwardly propagating biogas flames were tracked and imaged using Schlieren imaging technique. The results showed that, by increasing turbulence and reducing methane percentage in the surrogate, the flammability of the mixture shrinked. In addition, the curve fits of biogas turbulent burning velocity versus the equivalence ratio exhibited two different trends. The peak of turbulent burning velocity shifted away from nearly lean equivalence ratio toward the stoichiometric at a fixed turbulence intensity and higher CH4 percentage in the surrogate. However, for the same biogas surrogate composition, the peak of turbulent burning velocity shifted away from stoichiometric toward leaner equivalence ratio with increased turbulence intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call