Abstract

Thermoelectric (TE) properties of Single wall carbon nanotubes (SWCNTs) and Silicon carbide (SiC) nanoparticles after treated with sol-gel dopants at elevated temperature. Different combinations of P and N type sol-gels were used. The combinations were Boron-Antimony, Aluminum-Antimony, Aluminum-Phosphorus and Boron–Phosphorus. The nanoparticles were randomly distributed on a nonconductive glass substrate and hot and cold junctions were created using silver epoxy and Alumel (Ni-Al) wire. The carbon nanotubes used were approximately 60% semiconducting and 40% metallic. Voltage (mV), current (μA) and resistance (Ω) were measured across the distributed nanoparticles within 160° C temperature difference. The Seebeck coefficient for pristine SWCNTs was 0.12 mV/oC. When doped with Boron-Antimony the Seebeck coefficient increased to 0.981 mV/°C. On the hand, SiC nanoparticles showed no TE effect at pristine form, but when infused with SWCNTs substantial TE effect was present. Even though the Seebeck coefficient was in a similar range with different SWCNT concentrations (wt%), current, resistance and Power factor (P.F.) changed with wt% of nanotubes. Resistance of the nanotube samples slightly decreased with the increase in temperature. Finally, the SiC+SWCNT composites were prepared using the sintering process at around 1500° C. Thermoelectric and Mechanical properties of the composites were tested. The structure-property relation was analyzed using SEM (scanning electron microscope) and XRD (X-ray diffraction). It was revealed that fiber like SWCNTs created randomly distributed network with Nano contact junctions inside the SiC matrix and enhance thermoelectric and mechanical properties in the combined SiC+SWCNTs material system. Put abstract text here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.