Abstract

Recently a model describing the interaction between the particles of an electrorheological suspension and the resulting properties (yield stress, current density) has been proposed by Wu and Conrad. This model takes into account both the conductivity and the permittivity of each constituent of the suspension and predicts the behavior under DC and AC fields. The goal of the present work is to compare the predictions of this model with data available in the literature and with additional experiments using DC and AC fields at frequencies up to 2000 Hz. The ER fluids used in our experiments are suspensions of different ceramics particles ( Al 2 O 3, ZrO 2, TiO 2, CaTiO 3, BaTiO 3) in silicone oil. These particles cover a wide range of permittivity and conductivity, which allows us to study the ER effect with varying values of the conductivity and/or permittivity mismatch between the particles and the liquid. The model is in reasonable accord with experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.