Abstract

AbstractThe infrared and Raman spectra of bromotrimethylgermane (BTMG) were recorded afresh to complete the assignment of its vibrational spectra. The vibrational spectrum of BTMG has been predicted from hybrid density functional theory calculations (B3LYP) with several basis sets. The resulting harmonic wavenumbers were scaled by Pulay's scaled quantum mechanical (SQM) and the wavenumber‐linear scaling (WLS) methods to obtain accurate force fields which could aid in the vibrational assignment. Low‐temperature infrared techniques together with Fourier self‐deconvolution (FSD) on the Raman spectrum were used to improve the resolution of the spectra for the modes that could not be observed before. An SQM analysis was carried out to obtain the valence force constants and a set of scale factors that best reproduced the experimental data. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call