Abstract

An experimental study of the leading edge vortices on delta wings at large angles of incidence is presented. A combination of flow visualization, seven-hole pressure probe surveys and laser velocimeter measurements were used to study the leading edge vortex formation and breakdown for a set of delta wings. The delta wing models were thin flat plates with sharp leading edges having sweep angles of 70, 75, 80, and 85 degrees. The flow structure was examined for angles of incidence from 10 to 40 degrees and chord Reynolds numbers from 85,000 to 640,000. Vortex breakdown was observed on all the wings tested. Both bubble and spiral modes of breakdown were observed. The visualization and wake survey data shows that when vortex breakdown occurs the core flow transforms abruptly from a jet-like flow to a wake-like flow. The result also revealed that probe induced vortex breakdown was more steady than the natural breakdown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call