Abstract
The transfer function of a shunted two-junction interferometer, which was previously proposed as a basic element of superconducting neural networks based on radial basis functions, has been measured for the first time. The sample has been implemented in the form of a multilayer thin-film structure over a thick superconducting screen with the inductive supply of an input signal and the readout of an output signal. It has been found that the transfer function is the sum of the linear and periodic bell-shaped components. The linear component is likely due to the direct transfer of the input magnetic flux to the measuring circuit. The shape of the nonlinear component, which is the output signal of a Gauss neuron, can be approximately described by a Gaussian distribution function or, more precisely, by a parametric dependence derived theoretically in previous works. It has been shown that the transfer function of the Gauss neuron can depend on the choice of the working point of the measuring circuit, which promotes the development of integrated neural networks based on implemented elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Pisʹma v žurnal êksperimentalʹnoj i teoretičeskoj fiziki
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.