Abstract

In the current international situation, energy storage is an important means for countries to stabilize their energy supply, of which underground storage of natural gas is an important part. Depleted gas reservoir type underground gas storage (UGS) has become the key type of gas storage to be built by virtue of safety and environmental protection and low cost. The multi-cycle high injection and production rate of natural gas in the depleted gas reservoir type UGS will cause the in-situ stress disturbance. The slip risk of fault in the geological system increases greatly compared with that before the construction of the storage engineering, which becomes a great threat to the sealing of the gas storage. Reasonable injection and production strategy depend on the reliable assessment of the shear behavior of the fault belt, which can guarantee the sealing characteristics of the UGS geological system and the efficient operation of the UGS. Therefore, the shear behavior of the fault is studied by carrying out experiments, which can provide important parameters for the evaluation of fault stability. However, there is a large gap between the rock samples used in the previous experimental study and the natural faults, and it is difficult to reflect the shear failure characteristics of natural faults. In this paper, similar fault models based on high-precision three-dimensional scanners and engraving machines, filled with three types of fault gouge, are prepared for a batch of representative direct shear tests. The results show that the peak shear strength of the fault rocks with a shear surface is higher than that of the fault rocks with a tensile surface. Compared with the clay mineral content, the roughness of the fault surface is much more significant for the shear strength of the fault rock. For the fault rocks with similar fault surface morphology, the higher the clay content in the fault gouge, the greater the shear strength of the fault rocks. For the fault rocks with different fault surface morphology and the same fault gouge, the cohesion and internal friction angle of the tensile type is generally smaller than that of the shear type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call