Abstract

In order to study the effects of particle size on the determination of pore structure in shale, the outcrop of Ordovician Wufeng (WF) and Silurian Longmaxi shale (LMX) samples from Sichuan basin were chosen and crushed into various particle sizes. Then, pore structure was analyzed by using low-pressure gas adsorption (LPGA) tests. The results show that the pore of shales is mainly composed of slit-type pores and open pores. The specific surface areas of shale are mainly contributed by micropores, while the largest proportion of the total pore volume in shale is contributed by mesopores. With the decreasing of particle size, the specific surface area of both samples is decreased, while average pore diameter and the total pore volume are increased gradually. The influences of particle size on the pore structure parameters are more significant for micropore and macropore, as the particle sizes decrease from 2.36 mm to 0.075 mm, the volume of micropores in Longmaxi shale increases from 0.283 cm3/100 g to 0.501 cm3/100 g with an increment almost 40%, while the volume of macropores decreases from 0.732 cm3/100 g to 0.260 cm3/100 g with a decrement about 50%. This study identified the fractal dimensions at relative pressures of 0–0.50 and 0.50–0.995 as D1 and D2, respectively. D1 increases with the decrease of particle size of shale, while D2 shows an opposite tendency in both shale samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.