Abstract

An experimental flat plate solar collector operating in conjunction with a closed-end oscillating heat pipe (CEOHP) offers a reasonably efficient and cost effective alternative to conventional solar collector system that use heat pipes. The CEOHP system described in this study relies on the natural forces of gravity and capillary action and dose not require an external power source. The flat plate collector consisted of a 1 mm thick sheet of black zinc covered by a glass enclosure with a collecting area of 2.00 × 0.97 m 2 , an evaporator located on the collecting plate, and a condenser inserted into a water tank. A length of 0.003 ID copper tubing was bent into multiple turns at critical points along its path and used to channel the working fluid throughout the system. R134a was used as the working fluid. Efficiency evaluations were conducted during daylight hours over a two month period and included extensive monitoring and recording of temperatures with type-K thermocouples placed at key locations throughout the system. The results confirmed the anticipated fluctuation in collector efficiency dependant on the time of day, solar energy irradiation, ambient temperature and flat plate mean temperature. An efficiency of approximately 62% was achieved, which correlates with the efficiency of the more expensive heat pipe system. The CEOHP system offers the additional benefits of corrosion free operation and absence of freezing during winter months.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call