Abstract
ABSTRACTThe Mode I fracture energy of a polyurethane adhesive with low Young’s modulus was investigated. Metal adherends in standardized double cantilever beam (DCB) tests are typically too stiff for soft adhesives, making it difficult to measure the fracture energy accurately. However, soft adhesives, such as a single-component polyurethane adhesive tested in this paper, are in high demand in the automobile industry. Thus, accurate measurement techniques must be established. Flexible substrates composed of spring steel were used for the DCB tests to accommodate the deformation of the adhesive layer. First, the applicability of the flexible substrates was discussed using specimens bonded with an epoxy adhesive. For soft adhesives, however, the deformation of the adhesive layer must be considered in the calculation methods of the fracture energy. Although the deformation effect on the DCB tests has been discussed with Winkler’s elastic foundation, the crack length must be measured along with the load and displacement. To overcome the difficulty of measuring the crack length, a calculation method based on Winkler’s elastic foundation was introduced applying the compliance-based beam method (CBBM). Finally, the fracture energy of the polyurethane adhesive was discussed by comparing the calculation methods with and without measuring the crack length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.