Abstract

Due to the intricate amalgamation of various components, composite materials boast mechanical properties that surpass those of their constituents. Among these composite materials, glass fiber-reinforced polyester composites emerge as prominent contenders, finding extensive utility, especially in agricultural greenhouse construction. These structures garner significant acclaim for their exceptional ability to withstand adverse weather conditions, ensure prolonged durability, and transmit light efficiently, thus creating optimal growing conditions. Consequently, they have become the favored choice among farmers seeking dependable and sustainable environments for cultivation. Within the scope of this study, we employ Response Surface Methodology (RSM) as a comprehensive tool to delve deeply into the mechanical and optical characteristics inherent in such composite materials. Our investigation is meticulously tailored to unravel the intricate interplay among crucial factors such as fiber content, length, and plate thickness, elucidating their direct impacts on mechanical properties like stress and elasticity modulus. Our rigorous examination reveals that the pinnacle of mechanical performance is attained within a specific range: fiber content ranging from 20% to 40%, fiber lengths spanning 35 to 45 mm, and plate thicknesses measuring between 0.6 to 3 mm. Furthermore, our meticulous analysis of transmittance measurements uncovers an intriguing correlation: thinner thicknesses and lower fiber content correspond with heightened light transmission across the visible spectrum. Conversely, elevating the fiber content or thickness enhances mechanical robustness but concurrently diminishes light transmittance. Thus, achieving a harmonious equilibrium among these attributes becomes imperative for the pragmatic construction of agricultural greenhouses. Additionally, we venture into incorporating ultraviolet (UV) plastic films to augment the optical prowess of these composites, further elevating their efficacy in greenhouse applications. By embarking on this comprehensive investigation, our overarching objective is to propel sustainable farming practices forward by furnishing a nuanced understanding of the multifaceted factors that shape the performance of glass fiber-polyester composites in agricultural greenhouse applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.