Abstract
The effect of structured plasma-sprayed capillary-porous coatings on transient processes and the development of crisis phenomena at boiling under pulsed heat release was studied. The working fluid was liquid nitrogen on the saturation line at atmospheric pressure. It is shown that under unsteady heat release, there is a degeneration of the development of the boiling crisis on heaters with structured capillary-porous coatings at q < qCHF (critical heat flux at steady heat release). Under unsteady pulsed heat release, no rapid transition to the film boiling regime (without passing through the nucleate boiling stage) is observed on heaters with such coatings until the thermal load is more than two times higher than the critical heat flux for steady heat release. This significantly increases the times of transition to post-critical heat transfer. Analysis of synchronized measurements of surface temperature of heaters and high-speed video recording of transient processes shows that the degeneration of the heat transfer crisis at q < qCHF on samples with coatings occurs due to significantly lower liquid boiling temperature differences and specific features of the dynamics of propagation of self-sustaining evaporation fronts in comparison with a smooth heater.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.