Abstract

The solubility of cobalt and iron in silicate melts with variable SiO2 content was experimentally determined under controlled oxygen fugacity. It was shown that, independent of temperature and oxygen fugacity, the solubility of the two metals reaches a maximum (minimum of CoO and FeO activity coefficients) in melts of intermediate compositions. The analysis of available published data demonstrated that the γMeO values of at least four metals (Ni, Co, Fe, and Cr) dissolving in melts as divalent oxides show a minimum in melts with $$X_{SiO_2 } $$ ≈ 57 ± 2 mol %. The position of the minimum is essentially independent of the element, melt temperature, and oxide concentration (from a few ppm to 13 wt%). The extremes of iron solubility (γFeO) in Fe-rich MgO-free melts may shift toward significantly lower $$X_{SiO_2 } $$ values, although this inference requires additional experimental verification. Using a numerical example, some problems were discussed in the use of experimental data obtained in different laboratories for the development of a general model for the γMeO dependence on melt composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.