Abstract

The drill and blast method (D&B) is perhaps the most common excavation method for rock mass, and intense blasting vibrations would induce an excavation damage zone (EDZ) around the excavated space. The tensile failure of rock mass in EDZ at diverse rupture velocities results in various geological disasters in engineering practices. The objective of this paper is to investigate the effect of blasting on the tensile strength of sandstone rock and the influence of loading rate on the disk specimens affected by blasting. We firstly performed a D&B exercise on a sandstone block with a size of 600 mm × 600 mm × 120 mm. Then, a total number of 49 standard disk specimens were prepared from large fragments of this blasting sandstone block and an undamaged block. A series of Brazilian split tests was carried out using these specimens to determine their indirect tensile strength, and to assess the effects of the distance from the blasting source and loading rate (varying from 1.67 × 10−5 to 8.33 × 10−2 mm s−1). The results show that the tensile strength of specimens exhibits an upward trend with increasing distance from the blasting source, to approach that of undamaged rock, following a power function with a positive exponent (0~1). The loading rate affects the tensile mechanical behaviors of disks, in terms of the convergence of microscopic defects, the main load-bearing area, and the absorbed energy at the fracture moment of specimens. Both the tensile strength and absorbed energy have positive linear correlations with the natural logarithm of the loading rate. In addition, the fragmentation degree of disk specimens also increases due to an increasing brittleness of sandstone with the loading rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call